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ABSTRACT 

The general circulation of the global ocean is turbulent rather than laminar. Mesoscale 

eddies contribute to the transport of tracers like heat, salt, and oxygen, and affect large-

scale ocean dynamics. The problem of representing mesoscale variability stems from the 

nonlinear character of eddy dynamics that makes it difficult to predict equilibrated fluxes. 

The most intuitive solution is to apply a parameterization based on the eddy-driven 

transport observed in a global ocean that has been spinning up for centuries, which may 

not be feasible at present. An alternative approach involves constructing relatively simple 

analytically tractable equilibration models. In this study, the equilibration mechanism 

called the Growth Rate Balance (GRB) model proposes an explanation to the eddy 

dynamics as a competition between primary and secondary instabilities. The GRB model 

is validated in two configurations: in a two-layer model, and in a continuously stratified 

model. They identify the dependences of equilibrated fluxes on the characteristics of the 

background flow, and the applicability range of the GRB model. Finally, acoustic 

signatures of a fully developed eddy field predicted by the GRB model characterize the 

role of mesoscale variability in the important naval problem of acoustic propagation. 
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I. INTRODUCTION 

A. MESOSCALE VARIABILITY 

In basic general circulation classes, the first step oceanographers take after writing 

the governing equations is to replace the total fields with their mean values. However, 

such a necessary simplification could lead to the misleading perception that ocean flows 

are laminar rather than turbulent. In reality, mesoscale eddies are all over the ocean as 

shown in Figure 1. Eddies vary in appearance, but can be viewed simply as variability 

around a mean (background) flow. Such variations are observable over areas of 

thousands of square kilometers and last for weeks or months (Robinson 1983).  

 
Figure 1.  Global scale representation of the general ocean circulation. From 

ECCO2/JPL/NASA Project, 2004. Image available from ECCO2 at 
http://ecco2.jpl.nasa.gov/animations. 

Eddies are important because they transport ocean properties—heat, salt and 

oxygen, for instance—through the so-called eddy-induced fluxes. The importance of 

mesoscale eddies cannot be overstated. For example, the Meridional Overturning 

Circulation is reinforced in turbulent regions like the Antarctica Circumpolar Current 

(ACC) and greatly impacts global climate changes (Wolfe and Cessi 2010, 2011; Radko 

and Kamenkovich 2011). Another example is the effect of eddies on the structure of the 
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thermocline (Rhines and Young 1982; Radko and Marshall 2004; Henning and Vallis 

2005) that in turn impacts acoustic propagation. One of the most striking examples of 

eddy-induced fluxes is the heat transport by the Gulf Stream (Figure 2). Very sharp 

gradients of temperature induce detachment of warm core eddies from the north wall of 

the Gulf Stream, and cold core eddies from its southern boundary into the Sargasso Sea. 

As a result, the amount of heat transferred by the Gulf Stream from the tropics to the high 

latitudes is substantially increased relative to the mean transport. 

  
Figure 2.  Gulf Stream meandering along the East Coast of the United States. From 

SSEC EOS Direct Broadcast, 2007. Image available from OceanMotion.org 
at http://oceanmotion.org/html/impact/climate-variability.htm. 

Although the significance of eddy-induced fluxes in the global ocean is firmly 

established, the actual physics behind the development and equilibration of instabilities 

leading to generation of eddies is still poorly understood. The nonlinear character of 

mesoscale variability makes it difficult to predict eddy-induced fluxes and a general 

theory of eddy-induced transport is still missing. Researchers typically attempt to 

formulate physically based parameterizations to predict the evolution of tracer fields in 

coarse resolution models. The classic approach to the representation of eddy-induced 

mixing has been through parameterization since the available coarse resolution climate 

models do not provide adequate spatial resolution (Gent and McWilliams 1990; Visbeck 

et al. 1997; Eden 2011). The most common solution is to introduce a uniform, in space 
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and in time, eddy diffusivity coefficient. However, the current generation of eddy 

parameterizations introduces uncertainties in the prediction of quantities, such as the 

amount of pole-ward heat transport. A reliable theoretical model that explains eddy 

dynamics could greatly advance our ability to represent eddies in coarse resolution 

models. 

B. BACKGROUND  

Recent improvements in computational resources have allowed for the use of 

eddy-resolving numerical models (Lévy et al. 2010) to produce variability and assess its 

mixing effects. Therefore, the physics of eddy development and their effects on tracer 

distributions can now be more thoroughly described using fine resolution models. Several 

models focus on baroclinic instabilities (since they are a primary source of eddy kinetic 

energy). Analytical models, on the other hand, often utilize linear instability theory to 

explain how instabilities grow from initial perturbations (Charney 1947; Eady 1949; 

Phillips 1951) but do not show how the equilibration of eddy-induced fluxes is achieved 

as observed in nature. Others utilize weakly nonlinear models (Pedlosky 1970, 1971, 

1981) to compute equilibrated fluxes but fail to explain the dynamics of large-amplitude 

eddies. Models based on scaling laws (Larichev and Held 1995; Held and Larichev 1996; 

Frisius 1998; Lapayere and Held 2003; Thompson and Young 2006, 2007) analyze eddy-

induced transports at different scales, but their applicability depends on the reference 

scales. Phenomenological models examine eddy-induced transport by considering regular 

arrays of eddies, and assessing their cumulative effect on the general circulation (Spall 

and Chapman 1998; Manfroi and Young 1999, 2002; Novikov and Papanicolaou 2001; 

Radko 2011, 2012). However, the predictions of such models have not been sufficiently 

general or consistent. 

The limitations of these previous attempts could be addressed through the analysis 

of the actual dynamics of eddy development. First, the growth of instabilities could be 

linked to measurable parameters of the background flow. Second, the equilibration level 

could be predicted based on a growth rate balance discussed in the next section. Third, it 

would be possible to perform a spectral decomposition of the transport to study the 
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relevant interactions between mesoscale eddies and Large-Scale Eddy-Driven Patterns 

(LEDPs). Once insight into the pattern, quantification, and spectral composition of 

mesoscale variability is established, it is possible to produce a model to predict the 

development of its dependences on the stratification, depth, and shear of the background 

current.  

C. THE GROWTH RATE BALANCE MODEL 

This study focuses on a theoretical method to explain the development and 

equilibration of mesoscale variability as a competition between primary and secondary 

instabilities. In a baroclinically unstable ocean, initial perturbations in the vertical shear 

of the horizontal flow cause the amplitude of instabilities to grow in time. The fastest 

growing modes (primary modes) are oriented in the meridional direction, as indicated in 

Figure 3a. The growth of secondary instabilities takes longer, but their amplitudes 

eventually become larger than the primary mode amplitudes. At this point, the pure 

meridional modes are disrupted by sinusoidal modes that contain significant zonal 

variability (see Figure 3b). 

 
Figure 3.  Schematic of primary (left) and secondary instabilities (right). 
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Both the primary and secondary mode growth rates depend on background 

parameters (vertical shear, beta-effect, bottom drag, and stratification). However, the 

growth rate of secondary instabilities also depends on the amplitude of the primary 

instabilities. The dynamics of primary and secondary instabilities are linked through a 

linear balance given by a coefficient C of order one, given by  

 λ2 = Cλ1  (1) 

where the indices 1, 2 indicate primary, secondary modes, and λ  is the growth rate. As a 

result, the coefficient C can be regarded as the parameter that determines the amplitude of 

equilibrated baroclinic instabilities. The underlying physics of this relationship are 

determined by the monotonic dependence of  λ2  on the amplitude of the primary modes. 

When the amplitude of the primary modes is too small, the growth rate of the secondary 

modes remains relatively small. As the amplitude of the primary mode increases, it 

pumps up the secondary mode growth rate. As a result, the secondary instabilities gain in 

magnitude, rapidly reaching the level of primary modes, and suppress their growth. At 

this stage, the system reaches statistical equilibrium. 

An algorithm, based on the GRB assumption, is employed to evaluate the 

amplitude of equilibrated baroclinic waves. The algorithm first assumes a value for the 

coefficient C (the correct value is not defined by the GRB, but it is later refined through 

simulations). Linear instability theory is then used to determine the linear growth of 

primary instabilities. The Floquet theory for the stability of boundary layer flows (Herron 

1984) is next invoked to compute the growth rate of secondary instabilities based on the 

amplitude of the primary instabilities. These two steps are computed in a Maple code that 

verifies if the value for  λ2  satisfies the growth rate balance (1). If not, then the Maple 

code iterates until the balance is satisfied. Typically, 10 to 11 iterations are needed to 

satisfy the balance to within an error of magnitude 10-5. The final step is to use the 

equilibrated amplitude to compute variability statistics like potential vorticity (PV) or 

heat fluxes. Two configurations are utilized to validate the algorithm. The first is a simple 

two-layer model that solves the Phillips problem (Phillips 1951). The second is a more 

realistic configuration that solves the Eady problem (Eady 1949) in a continuously 
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stratified model. In the latter, the Eady system is solved for the root-mean-square (RMS) 

velocities profiles and compared to a simulation performed with the Massachusetts 

Institute of Technology General Circulation Model (MITgcm) (Marshall et al. 1997a, b). 

D. ORGANIZATION 

This thesis is focused on the growth rate balance model, which is applied to two 

configurations of baroclinically unstable models. A two-layer numerical model is 

compared to the Phillips problem of general circulation in Chapter II. Scale interactions 

between large-scale features and mesoscale eddies observed during the experiments 

motivate Chapter III. A three-dimensional model is compared to the Eady problem of a 

continuously stratified model in Chapter IV. Chapter V presents an analysis of acoustic 

signatures in fully developed mesoscale eddy fields. Finally, Chapter VI summarizes all 

findings, and Chapter VII suggests future research that could follow this study. 
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II. EDDY-INDUCED TRANSPORT IN A TWO-LAYER MODEL 

Mesoscale variability can be a result of i) interaction of the flow with topography, 

ii) lateral shear of the flow (barotropic instability) and iii) vertical shear of the flow 

(baroclinic instability). This thesis focuses on baroclinic instability as the source of 

mesoscale variability. Fluxes are evaluated from an unstable two-layer quasi-geostrophic 

model and compared with the equilibrated fluxes predicted by an algorithm based on the 

GRB assumptions. The Phillips problem (Phillips 1951) represents the baroclinically 

unstable flow by two layers of homogeneous and incompressible fluids of different 

densities. The adopted model in Figure 4 is generally based on the two-layer quasi-

geostrophic model (Pedlosky 1987). Baroclinic instability is created by setting up an 

upper layer with a zonal background flow U and a motionless lower layer. However, the 

developing instabilities lead to finite-amplitude motions in both upper and lower layers.  

Potential vorticity (PV) is the tracer of interest since it is readily available from the GRB 

model for the Phillips configuration. However, it should be mentioned that the 

differences between PV fluxes and passive tracer fluxes are generally small, less than 

10%. This result is detailed in Section C. 

 
Figure 4.  Schematic of the two-layer model. 
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A. NUMERICAL MODEL DESCRIPTION 

1. Governing Equations 

The numerical model computes the flow evolution in the Phillips configuration 

with a spectral method similar to the one used in Radko and Stern (1999).  The two-layer 

quasi-geostrophic equations (e.g., Pedlosky 1987) solved are  

 
  

∂Q1

∂t
+ J (Ψ1,Q1) = ν∇4Ψ1  (2) 

 
  

∂Q2

∂t
+ J (Ψ2 ,Q2 ) = ν∇4Ψ2 −γ∇

2Ψ2  (3) 

 
  
Q1 = ∇2Ψ1 +

f 2

′g H1

Ψ2 −Ψ1( ) + β y  (4) 

 
  
Q2 = ∇2Ψ2 +

f 2

′g H2

Ψ1 −Ψ2( ) + β y  (5) 

where each layer is represented by the streamfunction Ψ  and the potential vorticity Q . 

Here, the subscripts 1 and 2 apply to the upper and lower layers respectively, with the 

thickness of each layer represented by H1 , H2 . The coefficients include the eddy 

viscosity ν , and the bottom drag γ . The earth’s rotation is included in the model through 

the Coriolis parameter f and the vorticity gradient β ; ′g is the reduced gravity, which 

accounts for the density differences between the two layers. 

The background flow Ψ  is subtracted from the actual flow to express the 

governing equations in terms of the perturbations ψ . A similar treatment is applied to 

the perturbations of PV (q). The objective here is to assess the dependences of the 

equilibrated fluxes on seven background parameters. They are the background flow U, 

the radius of deformation in the upper layer  

 Rd1 =
1
f

′g H1  (6) 

at which the rotational effects become as relevant as buoyancy (Gill 1982), H1 , H2 , β , 

γ  and ν . Such a large number of parameters present a major obstacle to the assessment 

of individual dependences. Therefore, to simplify the task, the parameters are rewritten in 
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non-dimensional units using Rd1 , U, and 
Rd1
U

 as the scales of length, velocity and time 

respectively. As a result, only four non-dimensional governing parameters need to be 

assessed:  

 
  
βnd =

βRd1
2

U
 (7) 

   
r =

H1

H2  (8) 

 
  
γ nd =

γ Rd1

U
 (9) 

 
  
υnd =

ν
Rd1 U

 (10) 

where βnd  is the non-dimensional vorticity gradient, r is the layer thickness ratio, γ nd  is 

the non-dimensional bottom drag coefficient, and νnd  is the non-dimensional eddy 

viscosity coefficient. Dependence on viscosity is found to be very weak in the 

experiments, so this leaves only three relevant dependences to evaluate.  

The numerical model solves the non-dimensional equations  

 
  

∂q1

∂t
+ J (ψ 1,q1)+ (βnd + s)

∂ψ 1

∂x
+ s

∂q1

∂x
= νnd∇

4ψ 1  (11) 

 
  

∂q2

∂t
+ J (ψ 2 ,q2 )+ (βnd − sr)

∂ψ 2

∂x
= νnd∇

4ψ 2 −γ nd∇
2ψ 2  (12) 

   q1 = ∇2ψ 1 + ψ 2 −ψ 1( )  (13) 

   q2 = ∇2ψ 2 + r ψ 1 −ψ 2( )  (14) 

where  

 
 
s = U

U
 (15) 

indicates Westward background flows (WB) if negative, or Eastward background flows 

(EB) if positive. The passive tracer perturbations ′c  are computed through  

 
  

∂ ′c1

∂t
+ J (ψ 1, ′c1)+

∂ψ 1

∂x
+
∂ ′c1

∂x
= νnd∇

2 ′c1  (16) 
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∂ ′c2

∂t
+ J (ψ 2 , ′c2 )+

∂ψ 2

∂x
= νnd∇

2 ′c2  (17) 

to verify the aforementioned less than 10% flux difference and justify the PV fluxes as 

representative variability statistics. 

2. Model Configuration  

A typical set of governing parameters used in this study, representative of typical 

large-scale flows in the ocean interior (Talley et al. 2011), is given by U = 0.05 ms-1, Rd1  

= 25 km, βnd  = 0.25 (from β  = 2 x 10-11 m-1s-1), r = 1/3  (from H1  = 1 km and H2  = 3 

km), γ nd  = 0.5 (from γ  = 10-6 s-1) and νnd  = 0.005 (from ν  = 10 m2s-1). These values are 

varied in further simulations. In what follows, the term “large domain” refers to the 

doubly periodic domain that extends 3750 km in the zonal direction (allowing at least 20 

mesoscale eddies to align) and 1875 km in the meridional direction (allowing at least 10 

waves to propagate in parallel). The grid spacing is 2.5 km allowing for the full 

resolution of mesoscale eddies. 

The analyses of equilibrated eddy-induced flux dependences on βnd  and r 

conducted in this chapter are derived from the initial basic configuration. The 

dependences on γ nd  are more complex. As γ nd  is decreased, there is increasing 

development of large-scale features referred to as Large-Scale Eddy Driven Patterns 

(LEDPs). In such LEDP-dominant regimes, the GRB fails to predict equilibration. Hence, 

this analysis is postponed to Chapter III. To preclude the existence of large-scale features 

from equilibrated eddy fields, a doubly periodic domain that extends 500 km in each 

lateral direction is also utilized. In what follows, the term “small domain” refers to this 

domain. 
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3. Model Outputs  

The main outputs of the numerical model runs are the anomalies of potential 

vorticity, passive tracer, and flow velocity that make it possible to analyze how fluxes 

develop from rest.  The statistics of interest are  

 
 
′Vnd =

∂ψ nd

∂x
 (18) 

   Fqnd1 = ′Vnd1q1  (19) 

   Fqnd 2 = ′Vnd 2q2  (20) 

 
  
Kqnd1 = −

′Vnd1q1

βnd + s
, Kcnd1 = − ′Vnd1 ′c1  (21) 

 
  
Kqnd 2 = −

′Vnd 2q2

βnd − sr
, Kcnd 2 = − ′Vnd 2 ′c2  (22) 

describing the non-dimensional (meridional) PV fluxes Fqnd1  , Fqnd2  and eddy diffusivity 

coefficients Kqnd1 , Kqnd2 . The eddy diffusivity equations follow the closure for 

mesoscale eddy-induced fluxes described in Eden (2011) using the linear instability 

theory. The larger the diffusivity coefficient, the larger the average fluxes of the property, 

or the smoother the meridional gradient of the property. Note that positive values of flux 

imply that the property is being advected to the North. 

B. GROWTH RATE BALANCE THEORY 

1. Equilibration 

Figure 5 presents a sample time record of non-dimensional PV fluxes. Initially 

( tnd  = 0) there is zero PV flux. However, tiny initial perturbations grow ( tnd  ~ 200) as 

instabilities get organized in baroclinic wave modes. The equilibrium level occurs for tnd  

> 300 and is achieved through the balance (1). 
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Figure 5.  PV flux time series. 

The perturbations of the PV field in the numerical model are presented in Figure 

6, and demonstrate the instability development as predicted by the GRB model. Shown is 

a composition of three successive snapshots of the upper layer PV anomaly. The random 

initial perturbations lead to meridional wave trains as prescribed in the linear growth 

theory for the fastest growing instabilities. The first mode waves show up in Figure 6a 

( tnd  ~ 250) as nearly straight lines in the meridional direction. This pattern remains while 

secondary instabilities are still growing. At tnd  ~ 305 (Figure 6b) secondary instabilities 

have grown sufficiently strong to break the straight-line pattern. At tnd  ~ 450 (Figure 6c) 

equilibrium is reached, and eddies are visible throughout the entire domain. 
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Figure 6.  Snapshots of the PV anomaly field evolution in the large domain. 

2. Solution Stability 

In order to develop a predictive theoretical model based on the GRB assumption, 

the upper, lower layer streamfunction ψ 1 , ψ 2 , are divided into a basic state represented 

by the equilibrated perturbations  ψ 1 ,  ψ 2 , and variations about this basic state ′ψ 1 , ′ψ 2 . 

The basic state is represented by the primary mode solutions for each layer  

    
ψ 1 = A1 cos(kx)  (23) 

    
ψ 2 = A2 cos(kx +ϕ )  (24) 

with upper, lower layer amplitude A1, A2, zonal wavenumber k , and phase shift ϕ  

between the modes that propagate in the upper and lower layers. The objective is to  
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determine the amplitudes A achieved by the primary instabilities when the secondary 

instabilities become important and lead to equilibrium following the growth rate balance 

theory. 

If the wavenumber of the primary mode solutions were considered as k0  (the 

wavenumber of the primary modes at zero growth rate), the amplitude of the primary 

instabilities would be constant, and the governing equations would represent a well-posed 

stability problem. In the numerical model, the primary modes are better represented by 

kmax (the wavenumber corresponding to the fastest growing modes). In this case, the basic 

state becomes time-dependent, and the problem becomes ill posed. The stability analysis 

of flows that depend on time is possible (Sivashinsky 1985; Manfroi and Young 2002; 

Balmforth and Young 2002, 2005). It includes artificial forcing in the momentum 

conservation to maintain the steady state—called quasi-steady state approximation (Lick 

1965; Robinson 1976; Kimura and Smith 2011; Radko and Smith 2012). For this reason, 

kmax  is used as the primary mode wavenumber to determine the basic state of 

perturbations during the equilibrium period. Therefore, the following set of equations  

 
   

∂ ′q1

∂t
+
∂ ψ 1

∂x
∂ ′q1

∂y
−
∂ ′ψ 1

∂y
∂ q1

∂x
+ (βnd + s)

∂ ′ψ 1

∂x
+
∂ ′q1

∂x
= νnd∇

4 ′ψ 1  (25) 

 
   

∂ ′q2

∂t
+
∂ ψ 2

∂x
∂ ′q2

∂y
−
∂ ′ψ 2

∂y
∂ q2

∂x
+ (βnd − sr)

∂ ′ψ 2

∂x
= νnd∇

4 ′ψ 2 −γ nd∇
2 ′ψ 2  (26) 

   ′q1 = ∇2 ′ψ 1 + ′ψ 2 − ′ψ 1( )  (27) 

   ′q2 = ∇2 ′ψ 2 + r ′ψ 1 − ′ψ 2( )  (28) 

adequately describe the perturbations on the basic state. 
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The Floquet theory is adapted to solve for the growth rate of secondary 

perturbations by expanding the streamfunction perturbations in Fourier harmonics as 

follows: 

 
  

′ψ 1( ) = exp(ifqkx + imy + λt) ψ 1
(n) exp

n=−N

N

∑ inkx( )  (29) 

 
  

′ψ 2( ) = exp(ifqkx + imy + λt) ψ 2
(n) exp

n=−N

N

∑ inkx( )  (30) 

with growth rate λ , zonal and meridional wavenumbers k  and m  respectively, and 

Floquet coefficient  
fq . Each mode is represented by N Fourier components. The Floquet 

coefficient controls the fundamental zonal wavelength. The eigenvalues of the matrix  
Aq   

 
  
λ

ξ = Aq


ξ  (31) 

represent the growth rates of the normal modes  

ξ   

    

ξ = (ψ 1

(−N ) ,ψ 2
(−N ) ,ψ 1

(−N+1) ,ψ 2
(−N+1) ,...,ψ 1

( N ) ,ψ 2
( N ) )  (32) 

as function of k , m ,  
fq , βnd , γ nd , νnd , A1 , A2 , ϕ , and N. The fastest growing mode 

corresponds to the eigenvalues of  
Aq  with the largest real part for each input parameter 

set. 

The secondary growth rate can now be evaluated for given βnd , γ nd , νnd , r , N 

and A1 . However, the solution for the growth rate of secondary instabilities λ 2  rapidly 

converges with increasing N and therefore its specific value is of secondary importance.  

3. Sensitivity of Solutions to the GRB Coefficient C 

Once the dependence of the growth rate λ 2  on the amplitude is established, the 

latter can be recovered from the growth rate balance (1). The growth rate of primary 

instabilities λ 1  can be computed using linear instability theory for a chosen set of input 

parameters βnd , γ nd , νnd , r. However, the exact value of the coefficient C is not known 

and therefore the sensitivity of the solutions to this coefficient is now explored. Thus, a 

plausible range of C is considered and, for each value, the amplitude A1  is iteratively 
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computed as follows. First, an initial guess of A1  is made.  This implies a value for λ 2  

that is different from the one that satisfies (1). Successive iterations adjust values for A1 , 

in a way that would reduce the error of (1). The procedure is repeated until the desired 

accuracy is achieved.  Usually 10 to 11 iterations are needed to obtain the growth rate 

balance within an error of magnitude 10-5. Finally, the amplitude of the primary 

instabilities A1  determines the magnitude of the streamfunction or any other property 

after equilibration. The following diagnostics are based on the equilibrated PV fluxes. 

The parameters βnd  and r are varied separately for several plausible values of C. 

Figure 7 shows the equilibrated PV fluxes as a function of sβnd .  The magnitude of 

fluxes is larger for small values of βnd . Fluxes change sign for positive and negative 

values of βnd  with upper and lower layers fluxes having opposite signs as well. Fluxes 

are larger for larger values of the coefficient C.  

Figure 8 shows the PV fluxes as a function of the thickness ratio, and the 

dependence is characterized by monotonic increase with r. In this case, fluxes also 

increase with C. 

 
Figure 7.  PV fluxes in the upper (left) and lower layers as a function of βnd  for different 

coefficient C values. 
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Figure 8.  PV fluxes in the upper (left) and lower layers as a function of r for different 

coefficient C values. 

C. NUMERICAL SIMULATIONS AND CALIBRATION OF THE GRB 
THEORY 

1. Mesoscale Variability as a Function of βnd  

The dependence of mesoscale variability on βnd  is examined through 23 

numerical simulations, each with a different sβnd  taken from the range [-0.85, 0.85] with 

fixed r  = 1/3. The analysis is based upon the PV fluxes time-averaged over the 

equilibrium period. Figures 9 through 12 show representative PV flux time series (from 

both layers) diagnosed from those simulations. 

 
Figure 9.  PV flux time series in the upper (left) and lower layers for sβnd  = -0.85. 
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Figure 10.  PV flux time series in the upper (left) and lower layers for sβnd  = -0.25. 

 
Figure 11.  PV flux time series in the upper (left) and lower layers for sβnd  = 0.25. 

 
Figure 12.  PV flux time series in the upper (left) and lower layers for sβnd  = 0.85. 
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Equilibrium is reached at different times and with different magnitudes and 

directions for each value of sβnd . Simulations with small values of βnd  equilibrate faster 

due to much higher primary growth rates. WB flows equilibrate faster than EB with the 

same value of βnd . This observation agrees with Kamenkovich et al. (2009) that describe 

WB flows as less stable. The transport of PV by eddies is to the South (negative values) 

in the upper layer for negative values of sβnd , but in the opposite direction in the lower 

layer. The opposite behavior is observed for positive values of sβnd . Simulations with 

negative values of sβnd  equilibrate with larger magnitudes of PV fluxes than their 

positive counterparts. In general, there is a monotonic increase in PV fluxes as the value 

of βnd  decreases towards zero—smaller values of βnd  correspond to stronger background 

flows or shorter radii of deformation. Table 1 contains the values of PV fluxes and 

diffusivity coefficients for each layer, as diagnosed from each of the 23 numerical 

simulations. 
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sβnd  Fqnd1  Kqnd1  Fqnd2  Kqnd2  
-0.8500 0.1382 0.9211 -0.0461 0.0389 
-0.7500 0.3481 1.3924 -0.1160 0.1071 
-0.6500 0.5354 1.5298 -0.1785 0.1815 
-0.5000 1.0869 2.1737 -0.3623 0.4348 
-0.4000 1.2426 2.0710 -0.4142 0.5648 
-0.3500 1.6874 2.5960 -0.5625 0.8232 
-0.3000 1.5725 2.2464 -0.5242 0.8277 
-0.2500 1.7048 2.2731 -0.5683 0.9742 
-0.2000 1.8685 2.3356 -0.6228 1.1679 
-0.1250 2.1758 2.4866 -0.7253 1.5825 
-0.0625 2.5672 2.7383 -0.8557 2.1620 
-0.0375 2.2935 2.3829 -0.7645 2.0618 
-0.0125 2.1026 2.1293 -0.7009 2.0268 
0.0000 -1.9842 1.9842 0.6614 1.9844 
0.0125 -1.6157 1.5958 0.5386 1.6789 
0.0375 -1.6268 1.5680 0.5423 1.8333 
0.0625 -1.3306 1.2523 0.4435 1.6379 
0.1250 -0.7637 0.6788 0.2546 1.2221 
0.2000 -0.4230 0.3525 0.1410 1.0577 
0.2500 -0.3042 0.2434 0.1014 1.2174 
0.3000 -0.2046 0.1574 0.0682 2.0478 
0.3500 -0.1394 0.1033 0.0465 -2.7825 
0.4000 -0.1140 0.0815 0.0380 -0.5699 
0.5000 -0.0826 0.0550 0.0275 -0.1651 
0.6500 -0.0015 0.0009 0.0005 -0.0016 
0.7500 -0.0013 0.0007 0.0004 -0.0010 
0.8500 -0.0011 0.0006 0.0004 -0.0007 

Table 1.   PV fluxes and diffusivity coefficients for both layers evaluated for each 
simulation varying βnd . 

The lower layer transport characteristics are more counterintuitive. Note that 

Kqnd2  depends on r, which can lead to a singularity in Kqnd2  for βnd  comparable to r. 

Lower layer fluxes assume negative values for simulations with βnd  greater than r . 
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In addition to the analysis of PV—an active tracer—it is also of interest to 

examine dynamics of passive tracers in the model. The passive tracer is integrated in time 

using (16) and (17); Figures 13 and 14 compare its meridional diffusivities with the 

corresponding PV diffusivities. Potential vorticity and passive tracer diffusivities are in 

good agreement for the upper layer, but not so much for the lower layer due to the action 

of the bottom drag, which directly affects the PV dynamics but not the passive tracer. 

Passive tracers have higher diffusivity than active tracers, but the overall difference is 

less than 10%. Potential vorticity acts like an active tracer in the sense that it impacts the 

streamfunction through the governing equations. The values obtained for active and 

passive tracer fluxes and diffusivity coefficients for the upper layer are given in Table 2. 

Note that the diffusivity difference can increase dramatically for βnd  around 0.85 or 

higher; this is a regime in which the flow becomes only weakly unstable and unlikely to 

become fully turbulent. 

 
Figure 13.  Comparison between PV and passive tracer diffusivities for simulations 

varying sβnd  in the upper layer. 
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Figure 14.  Comparison between PV and passive tracer diffusivities for simulations 

varying sβnd  in the lower layer. 
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sβnd  Fqnd1  Kqnd1  Fcnd1  Kcnd1  (Kcnd1 − Kqnd1) /Kqnd1  
-0.8500 0.1382 0.9211 -0.8230 0.8230 -10.7% 
-0.7500 0.3481 1.3924 -1.3722 1.3722 -1.5% 
-0.6500 0.5354 1.5298 -1.7177 1.7177 12.3% 
-0.5000 1.0869 2.1737 -1.9445 1.9445 -10.5% 
-0.4000 1.2426 2.0710 -2.3920 2.3920 15.5% 
-0.3500 1.6874 2.5960 -3.2174 3.2174 23.9% 
-0.3000 1.5725 2.2464 -2.6030 2.6030 15.9% 
-0.2500 1.7048 2.2731 -2.2406 2.2406 -1.4% 
-0.2000 1.8685 2.3356 -2.3659 2.3659 1.3% 
-0.1250 2.1758 2.4866 -2.6040 2.6040 4.7% 
-0.0625 2.5672 2.7383 -2.6511 2.6511 -3.2% 
-0.0375 2.2935 2.3829 -2.3822 2.3822 0.0% 
-0.0125 2.1026 2.1293 -2.1881 2.1881 2.8% 
0.0000 -1.9842 1.9842 -2.0329 2.0329 2.4% 
0.0125 -1.6157 1.5958 -1.6607 1.6607 4.1% 
0.0375 -1.6268 1.5680 -1.6170 1.6170 3.1% 
0.0625 -1.3306 1.2523 -1.2710 1.2710 1.5% 
0.1250 -0.7637 0.6788 -0.7360 0.7360 8.4% 
0.2000 -0.4230 0.3525 -0.3811 0.3811 8.1% 
0.2500 -0.3042 0.2434 -0.2667 0.2667 9.6% 
0.3000 -0.2046 0.1574 -0.1835 0.1835 16.6% 
0.3500 -0.1394 0.1033 -0.1219 0.1219 18.0% 
0.4000 -0.1140 0.0815 -0.0973 0.0973 19.4% 
0.5000 -0.0826 0.0550 -0.0676 0.0676 22.8% 
0.6500 -0.0015 0.0009 -0.0015 0.0015 60.4% 
0.7500 -0.0013 0.0007 -0.0013 0.0013 72.1% 
0.8500 -0.0011 0.0006 -0.0011 0.0011 86.2% 

Table 2.   PV and passive tracer fluxes and diffusivity coefficients for the upper layer 
evaluated for each simulation varying βnd . 

2. Calibration of the GRB Theory Based on Variable βnd  Simulations 

Potential vorticity fluxes recorded in the foregoing experiments are now used to 

determine the GRB coefficient C.  Figures 15 and 16 plot the PV fluxes as a function of 

sβnd  for the upper and lower layer correspondingly. These figures also include the 

theoretical prediction based on the GRB theory for C = 3.5 and C = 4. PV fluxes show 

good agreement in both layers between the analytical solutions of the theoretical model 

and the solutions of the numerical model. For this evaluation, 27 simulations using the 
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small domain are included. Based on this set of experiments, it is suggested that the 

relevant values of the coefficient C fall between 3.5 and 4. 

 
Figure 15.  PV flux comparison showing best coefficient C fit for simulations varying 

sβnd  in the upper layer. 

 
Figure 16.  PV flux comparison showing best coefficient C fit for simulations varying 

sβnd  in the lower layer. 
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3. Mesoscale Variability as a Function of r 

The dependence of mesoscale variability on r is examined through 11 numerical 

simulations, each with a different r taken from the range [0.1, 1] with fixed βnd  = 0.25. 

The variability analysis is again based upon the average PV fluxes during the equilibrium 

period. Figures 17 through 20 show representative PV flux time series (from both layers) 

taken from these simulations.  

 
Figure 17.  PV flux time series in the upper (left) and lower layers for r = 0.1. 

 
Figure 18.  PV flux time series in the upper (left) and lower layers for r = 0.3. 
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Figure 19.  PV flux time series in the upper (left) and lower layers for r = 0.7. 

 
Figure 20.  PV flux time series in the upper (left) and lower layers for r = 1.  

Eddy-induced PV fluxes increase when the thicknesses of the layers become 

comparable. This suggests that lower layers that are much thicker than the upper layer 

produce less turbulence in the upper layer. This result can be rationalized based on the 

linear instability theory, which suggests that the growth rates rapidly reduce with 

decreasing r. Table 3 contains the values of PV fluxes and diffusivity coefficients for 

each layer. 
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r  Fqnd1  Kqnd1  Fqnd2  Kqnd2  
0.1000 -0.0593 0.0474 0.0059 -0.0395 
0.2000 -0.1576 0.1261 0.0315 -0.6305 
0.3000 -0.2622 0.2098 0.0787 1.5735 
0.3333 -0.2954 0.2363 0.0985 1.1821 
0.4000 -0.3712 0.2970 0.1485 0.9899 
0.5000 -0.5373 0.4299 0.2687 1.0747 
0.6000 -0.6797 0.5438 0.4078 1.1653 
0.7000 -0.8431 0.6745 0.5902 1.3115 
0.8000 -1.0531 0.8424 0.8424 1.5316 
0.9000 -1.2804 1.0243 1.1524 1.7729 
1.0000 -1.5060 1.2048 1.5060 2.0080 

Table 3.   PV fluxes and diffusivity coefficients for both layers evaluated for each 
simulation varying r. 

The comparison of active (PV) and passive tracer diffusivities for the variable r 

simulations confirms the results found for varying βnd . The values obtained for fluxes 

and diffusivity coefficients for the upper layer are given in Table 4. Figure 21 confirms 

that in general, passive tracers have higher diffusivity than active tracers—approximately 

9% greater. However, this fraction increases as the upper layer becomes much thinner 

than the lower layer. The lower layer diffusivities of PV differ from the corresponding 

passive tracer diffusivities (not shown), which mirrors the results for simulations with 

varying βnd .  
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r  Fqnd1  Kqnd1  Fcnd1  Kcnd1  (Kcnd1 − Kqnd1) /Kqnd1  
0.1000 -0.0593 0.0474 -0.0637 0.0637 34.3% 
0.2000 -0.1576 0.1261 -0.1480 0.1480 17.4% 
0.3000 -0.2622 0.2098 -0.2322 0.2322 10.7% 
0.3333 -0.2954 0.2363 -0.2581 0.2581 9.2% 
0.4000 -0.3712 0.2970 -0.3193 0.3193 7.5% 
0.5000 -0.5373 0.4299 -0.4540 0.4540 5.6% 
0.6000 -0.6797 0.5438 -0.5676 0.5676 4.4% 
0.7000 -0.8431 0.6745 -0.6988 0.6988 3.6% 
0.8000 -1.0531 0.8424 -0.8680 0.8680 3.0% 
0.9000 -1.2804 1.0243 -1.0512 1.0512 2.6% 
1.0000 -1.5060 1.2048 -1.2311 1.2311 2.2% 

Table 4.   PV and passive tracer fluxes and diffusivity coefficients for the upper layer 
evaluated for each simulation varying r. 

 

 
Figure 21.  Comparison between PV and passive tracer diffusivities for simulations 

varying r in the upper layer. 

The most appropriate values of C in this set of experiments are also limited to the 

interval [3.5, 4]. This is illustrated in Figures 22 and 23, which present a PV flux 

comparison showing the best coefficient C fit for simulations varying r in the upper layer. 
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For this evaluation, large domain simulations are not performed since there is close 

agreement between large and small domain simulations for the simulations varying βnd . 

 
Figure 22.  PV flux comparison showing the best coefficient C fit for simulations varying 

r in the upper layer.  

 
Figure 23.  PV flux comparison showing the best coefficient C fit for simulations varying 

r in the lower layer.  
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D. SUMMARY 

The objective of this chapter is to use a two-layer model configuration to validate 

and calibrate the GRB model. The Phillips problem is solved numerically and the 

equilibrated PV fluxes are, in turn, compared to the transport predicted by the GRB 

model. These numerical simulations explore the roles of two parameters (βnd  and r) in 

the equilibration of baroclinic instability. Equilibrated fluxes increase monotonically with 

faster flows, and preferably with WB flows. In addition, layers with comparable 

thicknesses have higher diffusivity. The differences between active and passive tracer 

fluxes are relevant only for very stable flows. Preliminary experiments with various 

values of bottom drag reveal that large-scale features can emerge in low-gamma regimes, 

and this effect is examined in greater detail in Chapter III. Finally, the values for the 

coefficient C (between 3.5 and 4) bound the solutions of the numerical model, and might 

be considered as appropriate inputs for the GRB model algorithm.  
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III. SCALE INTERACTIONS 

The experiments described in Chapter II reveal that eddy-induced fluxes in 

simulations with low bottom drag fail to equilibrate as prescribed by the GRB model. The 

presence of eddies with length scales larger than the typical mesoscale eddies increase the 

equilibrated flux values and the variability around the equilibrium level. Recall that such 

large-scale features are referred to as Large-Scale Eddy Driven Patterns (LEDPs). The 

dependence of eddy-induced fluxes on the bottom drag coefficient is described in this 

chapter, which focuses on the identification of regimes in which the GRB model fails. 

A. SCALE DECOMPOSITION 

To distinguish between LEDPS and mesoscale eddies, we introduce the scale 

separator Lss  = 20 Rd  representing wavelengths of 500 km. Here, Rd  is the baroclinic 

radius of deformation for the two-layer model 

 Rd = 1
f

′g H1H2

H1 + H2

 (33) 

which controls the size of eddies formed directly as a result of baroclinic instability. 

Eddies with scales less (greater) than Lss  are classified as mesoscale (LEDPs). The 

corresponding critical horizontal wavenumber of separation κ cr  is evaluated as follows. 

Recall that  

 Rd1 =
1
f

′g H1  (34) 

what implies that 

 Rd = Rd1
1+ r

 (35) 

and therefore 

 Rdnd =
Rd
Rd1

= 1
1+ r

 (36) 

corresponds to the value of Rd  when the lower layer thickness is much greater than the 

one for the upper layer. The expression of κ cr  in non-dimensional units is given by  
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 κ cr _nd =
2π

wavelengthnd
= 2π
20Rdnd

= 2πRd1
20Rd

= 0.1π 1+ r  (37) 

where the scale separation  

 SS =
κ cr _nd

2π
= 1+ r

20
 (38) 

is used in the Fourier analysis. 

The GRB model attempts to predict the value at which eddy-induced fluxes 

equilibrate by focusing on the dynamics of mesoscale variability. However, depending on 

the choice of background parameters, the eddy field may be affected or even dominated 

by large-scale variability, bringing into question the relevance of the GRB model. Three 

different simulations illustrate this behavior in the upper layer PV perturbation field. In 

Figure 24a, the simulation with the largest non-dimensional bottom drag coefficient (γ nd  

= 0.5) is shown. Nearly 30 eddies are aligned along the zonal direction that extends 3,750 

km. Thus, these eddies have length scales of hundreds of kilometers, and only typical 

mesoscale features are present. In Figure 24b, a simulation with stronger (by a factor of 

two) background flow—implemented by halving the non-dimensional vorticity 

gradient—is shown. Mesoscale eddies still exist, but it can be seen that features of larger 

length scales are present. They show up as a group of blue colors in the left side of the 

basin, and a group of red colors at the right side. In Figure 24c, a simulation where the 

bottom drag coefficient has been decreased by two orders of magnitude is shown. A 

large-scale feature dominates the basin and suppresses all noticeable mesoscale 

variability. 

The flow decomposition into mesoscale and LEDPs performed with the chosen 

scale separation Lss  is also shown in Figure 24. In the first simulation (Figure 24a), the 

mesoscale field is almost identical to the total field with large-scale transport responsible 

for approximately 1% of the total, and the GRB model fully predicts equilibrated fluxes. 

In the second simulation (Figure 24b), mesoscale features clearly still exist in the 

mesoscale plot, but the large-scale features become relevant. Their presence increases the 

LEDP transport to nearly 16% of the total PV transport. The GRB model can describe the 

development of instabilities from rest to equilibration, but the actual value of equilibrated 
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fluxes is missed. In the third simulation (Figure 24c), the LEDP field is the one that best 

resembles the total field. LEDPs are all over the basin, and they are responsible for 

approximately 99% of all eddy-induced transport. The GRB fails to describe eddy 

development both quantitatively and qualitatively. This last result is dramatic, and extra 

simulations can help to assess which regimes are more susceptible to LEDP dominance. 

 
Figure 24.  Upper layer PV perturbations from three different simulations divided into 

total, LEDP, and mesoscale fields. Percentages correspond to the portion of 
the eddy-induced transport carried by LEDP. 
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B. LEDP REGIMES 

A framework needs to be developed to identify which regimes of equilibrated 

fluxes can be predicted using the GRB model. This is accomplished by introducing the 

discriminator variable 

 
  
R = ln

Fq1LEDP

Fq1MESO

⎛

⎝
⎜

⎞

⎠
⎟  (39) 

which compares the transports induced by LEDP and by mesoscale features. The natural 

logarithm is used to indicate LEDP dominance when R is positive, and mesoscale 

dominance when R is negative. 

The dependence of mesoscale variability on LEDP regimes is examined through 

40 numerical simulations, each with a different γ nd  taken from the range [0.5, 0.005], 

and different strength of background flow (quantified through sβnd  taken from the range 

[-0.5, 0.25]). Figure 25 presents an interpolation of the discriminator variable R. It clearly 

shows that increasing bottom drag reduces the production of LEDPs. In the horizontal 

axis, faster flows occur toward βnd  = 0 (note that the zero is slightly displaced to the 

right). Results show that the stronger the flow, the more LEDP production is induced. 

WB flows (negative values of sβnd ) have a greater tendency to develop LEDP. Such 

flows are naturally counteracted by the rotation of the Earth, so they would need less 

energy to enter into a turbulent regime. The white line marks the values for R close to 

zero with any regime inside this dome having positive R. The GRB model fails to 

describe mesoscale eddy-induced flux equilibration in these regimes since it misses a 

large part of the turbulent transport performed by LEDPs. 
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Figure 25.  Discriminator R between LEDP and mesoscale eddy-induced PV fluxes. 

Reddish colors inside the white dome represent LEDP-dominant regimes. 

C. SUMMARY 

This objective of this chapter is to identify those regimes where the GRB fails to 

predict mesoscale eddy development (due to the presence of LEDPs). The Fourier 

analysis of 40 different simulations is conducted to divide the total fields of PV 

perturbations into mesoscale and LEDP fields. A scale separation is based on 20 radius of 

deformation. A discriminator R is introduced to identify regimes in which LEDP fluxes 

are larger than mesoscale fluxes. Finally, it is shown that strong, westward background 

flows and low bottom drag coefficients favor LEDP development. 
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IV. HEAT TRANSPORT IN A CONTINUOUSLY STRATIFIED 
MODEL 

The two-layer model validated the GRB theory, but it remains to be determined 

whether it is sufficiently general or configuration dependent. Therefore, we now turn to a 

different and more realistic setup—the continuously stratified problem formulated by 

Eady (1949). Numerical solutions are obtained using a three-dimensional model 

(MITgcm) and compared with the predictions of GRB theory. This comparison 

demonstrates that its key assumptions (a balance between growth rates of primary and 

secondary instabilities) is generic and is likely to apply to different models. 

The diagnostics are focused on RMS velocity and heat flux since they are 

computed from a second order statistical moment that represents variability around the 

mean. The analysis of the PV fluxes (an approach used for the Phillips configuration in 

Chapter II) becomes less meaningful for the Eady configuration, which is characterized 

by zero meridional background PV gradients.  The RMS velocity profiles also indicate 

the amount of eddy kinetic energy available at each vertical layer. The analysis of the 

numerical model and validation of the GRB model in this chapter follows three steps. 

First, equilibration is simulated in the three-dimensional model to qualitatively verify the 

dynamics assumed by the GRB model. Second, the Eady problem is solved using the 

GRB algorithm, and the solutions are expressed in terms of RMS horizontal velocity 

profiles. Finally, the RMS horizontal velocities computed at each vertical layer in the 

three-dimensional numerical model are compared with the RMS horizontal velocity 

profiles from the GRB theory. The agreement suggests that the GRB model is able to 

predict eddy equilibration in this more realistic environment.  

A. NUMERICAL MODEL DESCRIPTION 

Eddy development is induced in the three-dimensional model by baroclinic 

instability, which is introduced as follows. The temperature is relaxed to the prescribed 

temperature profiles at the warm Southern boundary and the cold Northern boundary of 

the domain. The resulting meridional density gradients cause vertical shear of the zonal 



 38 

flow through thermal wind effect, which, in turn, generates baroclinic instability. The 

target temperature at the boundaries decreases linearly with depth and the overall vertical 

variation in temperature is Δ zT  = -5˚C. The model domain is a cuboid with dimensions 

extending 1024 km horizontally (a square) and 1100 m vertically. The eddy-resolving 

horizontal grid spacing is 2 km. The domain spans through 44 vertical levels spaced 25 m 

apart from 0 to 1075 m and periodic boundary conditions are applied in the zonal 

direction. The interior temperature is allowed to fluctuate under the influence of 

mesoscale eddies. 

The meridional temperature gradient produces mean horizontal velocity and 

typical mesoscale flows. The basic configuration assumes the background flow U = 0.1 

ms-1 at the surface and the radius of deformation Rd  approximately 33 km. The 

background flow is computed from  

 
  
U ~ ∂U

∂z
(H + z)  (40) 

for each layer of depth z. The basin depth is H = 1100 m. The vertical shear caused by 

thermal wind is  

 
  

∂U
∂z

= g
f

1
ρ
∂ρ
∂y

 (41) 

where g  = 9.81 ms-2, and f  = 10-4 s-1. The simplified equation of state takes the form   

 
  

Δρ
ρ

= −α .ΔT  (42) 

where the thermal expansion coefficient α  = 2 x 10-4 ˚C-1 and target meridional variation 

in temperature Δ yT  = -5˚C (warmer South, colder North, negative gradient). The salinity 

contraction coefficient is set to zero so that all effects on the density distribution are 

controlled entirely by the temperature component. The buoyancy frequency is given by 

 
 
Nb =

g
ρ
∂ρ
∂z

 (43) 

and the radius of deformation is 

 b
d

N HR
f

= . (44) 
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The eddy-induced heat flux is computed according to  

  FT = ′T ′V  (45) 

and its time record makes it possible to observe the instability growth from rest to 

equilibration. In (45), TF  depends on the anomalies of temperature ′T  and meridional 

flow ′V  while the angular brackets represent the spatial mean at each vertical level. The 

temperature relaxation zones are excluded by considering only the inner 80% of the 

domain in the meridional direction. 

Figures 26 and 27 present a typical simulation of baroclinic instability in the 

continuously stratified model. The dynamics of equilibration are clearly illustrated by the 

numerical model. Figure 26 shows the time record of the heat transport by eddies at the 

surface. Initially, the heat flux is zero, and it continuously increases in time as unstable 

temperature and velocity perturbations grow. Figure 27 presents four successive 

snapshots of temperature perturbation. The temperature field is initially at rest (Figure 

27a, t = 0). The background flow develops nearly as expected from thermal wind balance 

after several days, and instabilities organize in baroclinic wave modes between three 

(Figure 27b) and four months (Figure 27c). Equilibrium is achieved after six months. 

(Figure 27d). 

 
Figure 26.  Eddy-induced heat flux time record in days. 
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Figure 27.  Snapshots of the temperature anomaly field development. 

B. GROWTH RATE BALANCE THEORY 

1. Formulation of the Eady Model 

The Eady model solves the governing equation  

 
  

∂
∂t
∇2ψ + J (ψ ,∇2ψ )+ z

∂
∂x

∇2ψ = 0  (46) 

subject to the bottom z = -1 and the surface z = 0 boundary conditions  

 
  

∂2ψ
∂t ∂z

+ J (ψ , ∂ψ
∂z

)+ z
∂2ψ
∂x∂t

− ∂ψ
∂x

= 0,z = −1,0  (47) 

for the perturbation streamfunction (ψ ). The streamfunction Ψ  and the corresponding 

zonal velocity U  describe the basic state as in  

 U
y

∂Ψ= −
∂

 (48) 

 
  
Ψ = −Uy = −U (H + z)

H
y . (49) 

The system is converted to non-dimensional units by using the radius of deformation, the 

background flow at the surface, and the basin depth. The key result of the Eady (1949) 
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analysis is the calculation of the linear growth rates of primary baroclinic instabilities as a 

function of background parameters. 

2. Implementation of the GRB Theory 

The aforementioned experiments with the three-dimensional model show that the 

key assumptions of the GRB theory are realized in a continuously stratified model. 

However, for further verification, it is necessary to compare the amplitude of the 

baroclinic waves in the numerical model with that in the theory. The details of the GRB 

implementation for the Eady problem are not presented since they are analogous to that 

for the Phillips model (Chapter II).  The output is given in terms of the equilibrium RMS 

velocity profiles. The specific values depend upon the assumed coefficient C.  

3. Sensitivity of Solutions to the GRB Coefficient C 

The RMS velocity profiles are computed from the solutions of the Eady problem 

for the perturbation streamfunction. Figure 28 shows typical RMS velocity profiles for 

different coefficient C values. The variability minimum is observed in the middle of the 

vertical extent of the basin (z = -0.5) while it increases towards similar maximum values 

at the surface and at the bottom. The magnitude of the RMS velocity increases 

monotonically with increasing C. 
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Figure 28.  RMS velocity profiles for different coefficient C values. Both axes are non-

dimensional. 

C. COMPARISON OF THE THEORETICAL AND NUMERICAL MODELS  

The comparison is based on four simulations with different background flows and 

stratifications. In the first simulation, the target variations in temperature are set Δ yT  = 

5˚C and Δ zT  = 5˚C. In the second, the target meridional variation in temperature is 

doubled, which doubles the background flow. In the third, the target vertical variation in 

temperature is doubled, which increases the radius of deformation. In the final simulation 

both meridional and vertical gradients are doubled. For each experiment, the RMS 

velocity profiles are compared (Figure 29) to solutions for the equivalent Eady problem. 

Figure 29a presents the numerical simulations and the solutions of the Eady problem for 

Δ yT  = 5˚C and Δ zT  = 5˚C. The following figures present those for Δ yT  = 5˚C and 

Δ zT  = 10˚C (Figure 29b), Δ yT  = 10˚C and Δ zT  = 5˚C (Figure 29c), and Δ yT  = 

10˚C and Δ zT  = 10˚C (Figure 29d). 



 43 

 

 
Figure 29.  Comparison of RMS velocity profiles. 

The RMS velocity profiles computed for the Eady model with coefficient C = 3 

provide good fit to the RMS velocity profiles of the numerical model. This result matches 

the conclusion obtained earlier for the two-layer model configuration (Chapter II), in 

which the coefficient C lies between 3.5 and 4. The agreement is particularly good in the 

upper part of the water column. The reduced agreement toward the bottom of the profiles 

is related to the inclusion of bottom drag in the numerical model (necessary to prevent the 

spontaneous generation of large-scale features) whereas bottom drag is neglected in the 

Eady problem. It should also be noted that the Eady problem is formulated in an  

 

unbounded ocean. However, the results in Figure 29 indicate that the three-dimensional 

model can still provide appropriate comparison provided that the meridional extent is 

much larger than the radius of deformation. 
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D. SUMMARY 

The objective of this chapter is to use a continuously stratified model to validate 

the GRB model in a scenario that is more realistic than the two-layer model. A three-

dimensional numerical model (MITgcm) is employed to generate equilibrated heat 

fluxes. It is verified that the stages of eddy development are consistent with the 

assumptions of the GRB model. A comparison between the RMS velocity profiles in the 

numerical model and in the theory validates the GRB model as a convenient predictor of 

the intensity of mesoscale variability. Finally, the coefficient C = 3 obtained from the 

continuously stratified models is consistent with the corresponding estimates from the 

two-layer model. 
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V. ACOUSTIC SIGNATURES OF MESOSCALE VARIABILITY 

The equilibration of eddy-induced fluxes predicted by the GRB theory in the 

continuously stratified model indicates the presence of a fully-developed mesoscale eddy 

field. This field represents a challenge for acoustic propagation prediction, and this is a 

very important naval problem. Comparing two different moments in the simulations helps 

to understand some characteristics of this problem. The first is when the ocean is still 

unperturbed, called an eddy-poor scenario. The other is when fluxes are already 

equilibrated, called the eddy-rich scenario.  

A. ENVIRONMENTAL DATA 

The temperature data from the three-dimensional model is applied to characterize 

the eddy field. A simulated ship collects 21 along-track temperature profiles starting from 

the South and going North in the zonal center of the basin as in Figure 30. The profiles 

are spaced 40 km apart and extend from the surface to the bottom. The track keeps 10% 

of the meridional extent away from each meridional boundary. 

 
Figure 30.  Simulated ship track. 

This analysis intends to avoid any bottom interaction that could mislead the 

acoustic signature from eddy effects. However, the computational cost of extending the 

basin vertically beyond the 1100 m available in the MITgcm data would sacrifice the 25 
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m vertical resolution. The solution is to mount the temperature profiles over an 

isothermal layer extending from 2000 m to 4000 m. The bottom temperature of the 

MITgcm model is relaxed to the isothermal layer temperature linearly with depth 

between 1100 m and 2000 m. Although this procedure introduces new data to the 

MITgcm model results, all analysis is limited to the upper 1000 m eddy field.  

Another point is the salinity contraction coefficient of the equation of state that is 

set to zero for the GRB validation. The salinity profiles are necessary to compute sound 

speed profiles, so climatology for the ACC region in January is obtained from the Naval 

Research Lab (NRL) Generalized Digital Environmental Model (GDEM). This provides 

a realistic and detailed profile for a known turbulent region. Once the temperature and 

salinity profiles are available, the sound speed profiles (SSP) are computed using a 

MATLAB code for the nine-term Mackenzie equation (Mackenzie 1981) and then 

processed with the Bellhop acoustic toolbox (Porter and Bucker 1987). Sample profiles 

are provided in Figure 31. 

 
Figure 31.  Sample profiles of temperature, salinity, and sound speed. 
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The temperature cross-sections and the range-dependent sound speed profiles for 

each scenario are shown in Figures 32 and 33. In the eddy-poor scenario, the South is 

warm, the North is cold, and the temperature decreases with depth. These temperatures 

affect the sound speed profiles by increasing sound speed in the South, and decreasing in 

the North. Overall, the fastest sound speed velocities are close to the bottom due to the 

effect of pressure. In the eddy-rich scenario, warm core and cold core eddies are very 

well defined. The same sound speed dependence on temperature is observed. A rough 

observation of the features in this 800-km cross section shows that there are eddies 

extending between 50 and 100 km each, so they clearly represent mesoscale eddies. 

 
Figure 32.  Along-track temperature cross sections for the eddy-poor (above) and the 

eddy-rich scenarios. 
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Figure 33.  Along-track range-dependent sound speed surfaces for the eddy-poor (above) 

and the eddy-rich scenarios. 

B. ACOUSTIC SIGNATURES 

1. Configuration 

After some simulations, it seems that launching seven acoustic rays yields less 

busy ray tracing plots. The launching angles are equally spaced between five degrees 

above and below the horizontal plane of the source. The analysis is performed for three 

different source depths at 5 m, 250 m, and 1000 m. It should be noted that the ray paths 

and transmission losses are also valid if the problem is inverted and a receiver is placed in 

the position of the source. The source frequency is 200 Hz. Figures 34 through 36 are 

Bellhop plots for the sound speed surfaces at the top, ray tracing in the center, and 

transmission losses at the bottom. 

2. Acoustic Signatures for a Near-Surface Source 

In the eddy-poor scenario, the ray tracing plots show that the acoustic propagation 

in an unperturbed ocean depends mostly on the launching angle. In the eddy-rich 

scenario, the warm core eddies act to bend down the acoustic rays and create an acoustic 



 49 

shadow that can be tactically explored. The colder mid-depth temperatures act to bend the 

acoustic rays back to the surface. Finally, the far cold core eddies act to concentrate the 

acoustic energy, creating a possible extended-range detection, depending on the power of 

the source. The TL plots help to identify the acoustic shadow position. 

 

Figure 34.  An acoustic signature of mesoscale eddies for a source depth of 5 m. 

3. Acoustic Signatures for a Mid-depth Source 

The eddy-poor scenario presents the same behavior for a near-surface source, but 

the eddy-rich scenario is quite different. The lower source depth at 250 m permits an 

acoustic emission exactly through the vertical center of the near-source warm core 

eddies. The acoustic rays are now able to propagate through the eddy, especially those 

with very small launching angles. Possibly, this is a well-suited depth to lower the source 

(or receiver) if it is necessary to detect a target present inside an acoustic shadow created 

by a warm core eddy. 
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Figure 35.  An acoustic signature of mesoscale eddies for a source depth of 250 m. 

4. Acoustic Signatures for a Deep Source 

Finally, the source depth is lowered to 1000 m, so the acoustic rays miss the 

surface eddies. The shallow warm core eddies are not able to greatly interfere in the 

propagation pattern. The natural bending up of the rays caused by the colder 

temperatures, associated with the far-located cold core eddies, extend the surface 

detection. The comparison between the transmission losses in the two scenarios 

resembles well this extended range. 
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Figure 36.  An acoustic signature of mesoscale eddies for a source depth of 1000 m. 

C. SUMMARY 

Accurate acoustic prediction in range-dependent environments is a very complex 

problem that is sensitive to proper characterization of the eddy field scale and gradients. 

This is a very brief analysis of the acoustic signatures of the equilibrated mesoscale eddy 

field predicted by the GRB model, but the objective is achieved. Mesoscale eddies 

greatly affect the acoustic propagation, so they deserve appropriate characterization. 
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VI. CONCLUSIONS 

The GRB model is a new equilibration theory capable of predicting equilibrated 

eddy-induced fluxes. It describes development of eddies as a result of baroclinic 

instability from initial perturbations to a fully developed eddy-field.  The model attributes 

the equilibration of instability to a competition between primary and secondary 

instabilities. The equilibration is achieved when the growth rate of primary instabilities is 

comparable to the growth rate of secondary instabilities. The basis for such an 

assumption is the observation that baroclinic instability modes emerging from random 

perturbations grow in time and develop secondary instabilities. Unlike the primary ones, 

the growth rate of secondary instabilities monotonically increases with the amplitude of 

primary modes. At first, the growth of secondary instabilities is too slow to inflict any 

significant damage to growing primary modes—the evolution of small-amplitude 

perturbations is adequately captured by the linear theory. However, at some point, the 

growth rate of secondary instabilities significantly exceeds the primary growth rates. As a 

result, the secondary instabilities gain in magnitude, rapidly reaching the level of primary 

modes, and suppress their growth. At this stage, the system reaches statistical 

equilibrium. This GRB assumption leads to analytical solutions of eddy development that 

can ultimately replace the classic parameterization of equilibrated eddy-induced fluxes.  

Based on the GRB model, a simple algorithm is developed which predicts the 

equilibrium eddy-induced fluxes and RMS velocity as functions of background 

parameters. First, the growth rate of primary instabilities is computed using the linear 

instability theory (Eady 1949; Phillips 1951). Second, the Floquet theory for the stability 

of boundary layer flows (Herron 1984) is used to compute the growth rate of secondary 

instabilities based on the amplitude of the primary instabilities. Finally, the growth rate 

balance (1) determines the equilibrium amplitude of mesoscale variability. The GRB 

model is verified by comparing several predictions like meridional PV fluxes, eddy 

diffusivities and RMS velocity profiles with the corresponding numerical results. Such  
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comparisons are made for a two-layer model (Chapter II), and a continuously stratified 

model (Chapter IV). The coefficient C, with values between 3 and 4, guarantees the 

growth rate balance between primary and secondary instability growth rates. 

The two-layer system is used to explore the dependences of equilibrated fluxes on 

three characteristics of the background flow: βnd , r and γ nd . The eddy-induced transport 

is largest for small negative values of non-dimensional vorticity gradient and large 

thickness ratio. A series of simulation with varying γ nd  show that the development of 

large-scale features in some regimes can cause failure of the GRB model. Such regimes 

are realized for small negative values of non-dimensional vorticity gradient and low 

bottom drag coefficient. It must be pointed out that the GRB model is very general. In 

this study it has been applied to baroclinic instability, but it is possible that it can address 

other theoretical instability problems in fluid dynamics. 

Finally, an acoustic analysis (Chapter V) attempts to quantify the influence of 

mesoscale eddies on sound propagation in the ocean. The comparison between acoustic 

signatures of eddy-poor and eddy-rich scenarios suggests that fully-developed eddy fields 

greatly affect acoustic propagation. Acoustic shadows and range-extended propagation 

exemplify the influences of the presence of eddies in the ocean environment. 
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VII. RECOMMENDATIONS 

The results of this work motivate a number of different studies to follow. Hence, 

the list below comprises suggestions for future research topics: 

1. The validation of the GRB model in non-zonally oriented basins 

2. More detailed analysis of the dynamics and transport characteristics of 

variability in the LEDP-dominated regimes 

3. Effects of variable bottom topography on eddy dynamics and equilibrium 

transport 

4. In depth acoustic analysis of equilibrated mesoscale eddy fields 
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